
Contents

A file showing off some Org Mode and ESS features

Preamble
Tips for using this document

If you are looking at this on the web, and I hope you find it useful. But, a useful method
of using this file to learn is to download the plain text .org file, open it in Emacs, and
explore it, editing and/or evaluating the various blocks provided, seeing what they do,
changing things, trying again, how did it change – all those pedagogical techniques. (If
you somehow mess up, you can always download the file again!)

The structure of this document was originally designed to (and may still) parallel that of the
short beamer presentation from the same project. There are pointers to other presentations and
tutorials under below. In particular, you may find the Org Mode Quick Start guide, as well as
a tutorial by Erik Iverson, org-mode-R-tutorial.org, and a more recent one from Vikas Rawal,
orgpapers.org, useful.

Some notation

A string inside square brackets, [abecde], means you, the user, should type the string,
leaving out the square brackets.

Also, the Emacs convention for control and modifier (alt) keys is used. So, [C-x b]
means type control x, then the letter b. And, [M-x b] would mean type modifier x
(maybe better known as ’alt x’), then the letter b (almost certainly an error!).

Contents

Here’s a brief map. After a brief introduction to Org Mode, we discuss

• the basics of source blocks, in which code is embedded;

• how to evaluate a source block (to produce results);

• how to export a .org file, including the code of source blocks and/or the results of evaluating
them;

• how to extract source blocks from the .org file and write them to a file (a process known as
tangling);

• the two options for editing source blocks;

• some of the header arguments that can be used; and, finally

• pointers to more information

Introduction to Org Mode
Emacs (wikipedia) Org Mode 1 sometimes exhorts one to do something like "Organize Your Life In
Plain Text!"; the Org Mode manual, on the other hand, starts off by saying, "Org is an outliner".
The philosophy of Org Mode (indeed, of Emacs, and maybe, to some extent, of any of the *nix
operating systems) is that using non-proprietary file formats and software provides the most "lib-
erating" and "horizon-free" way of taking advantage of modern information technology. And, to

1a.k.a., "org-mode", Org Mode, orgmode – the proliferation of notation makes googling somewhat of a challenge.

1

https://ess-intro.github.io/presentation-org-mode/artefacts/ess-org-demo-expanded.org
https://ess-intro.github.io/presentation-org-mode/artefacts/ess-org-beamer.pdf
https://orgmode.org/quickstart.html
https://github.com/erikriverson/org-mode-R-tutorial/blob/master/org-mode-R-tutorial.org
https://github.com/vikasrawal/orgpaper/blob/master/orgpapers.org
https://www.gnu.org/software/emacs/
https://en.wikipedia.org/wiki/Emacs
https://orgmode.org/

some extent, that a mostly-command line interface, rather than a graphical user interface, is also
"the way to go".

I think Org Mode started off as a way of simplifying the creation of formatted documents, with
tables, etc., for taking notes, creating agendas (items with date elements), and evolved into a much
larger system of utilities for, for example, converting ("exporting", in org mode parlance) between
the Org Mode syntax to .html, .pdf, etc., documents, with good support for doing mathematical
(LATEX) formatting.

Org Mode does a good job exporting to LATEX, html. (Some people primarily use Org Mode as
a more "user friendly" interface to LATEX, though for serious documents, in the final analysis they
probably spend a lot of time tweaking LATEX, and org-to-LATEX, configuration.)

Though I have used Org Mode for more than a decade, I know very little of most of its capa-
bilities, as I mostly use it to centralize the source code within a project, as well as to produce the
random document, especially documents with embedded code segments (known, in Org Mode, as
"source blocks").

Org Mode is bundled into the main Emacs distribution, but a more-than-casual user might like to
use the more-than-likely up-to-date package available via melpa ([M-x package-list-packages],
and regexp-search for /ˆ..org /).

Babel is one name for talking about programming language support in Org Mode. You are able
to embed source code inside of Org Mode buffers, edit these code blocks in a language-specific way,
evaluate code blocks, pass the results of the evaulation of one code block to another code block, and
include code blocks and/or the results of their evaulation in the document produced by exporting
the org buffer. The rest of this document is dedicated to explaining these things.

Blocks of various sizes, shapes, colors

Various sorts of "blocks" are supported in Org Mode files. These start with #+begin_..., and end
with a corresponding #+end_..., where the ... are something like src, example, quote. A skeleton
for some of these can conveniently be created with the command [M-x org-insert-structure-template]
([C-c C-,]), and entering the type of block you are interested in creating, e.g.,

• e for an example block (line wrapping does not apply) (#+begin_example)

• q for a quote block (line wrapping applies) (#+begin_quote)

• s for a source block (#+begin_src)

there are various other blocks; you can experiment by typing [M-x org-insert-structure-template]
([C-c C-,]) and then one of the following

• a

• c

• C

• E

• h

• l

• v

and seeing what you get, looking in the manual for enlightenment. (Of course, one can always
search the manual for #[+]begin_.)

In addition to the source blocks mentioned above (and elaborated on below), Org Mode allows
short bits of "verbatim" code to be introduced by a colon as the first non-blank column of a line

2

https://melpa.org/
https://orgmode.org/worg/org-contrib/babel/intro.html

: this is verbatim

One can have longer runs of verbatim ("example") data (which is not word wrapped, etc.:

#+name: ex
#+begin_example
this is a block
that
holds more verbatim text
#+end_example

As well as longer bits of text that will be wrapped ("quote"):

#+begin_quote
this is a bit of
text that should
show up, eventually, strung out in a smaller
number
of
lines when "filled"
(e.g., [M-x org-fill-paragraph] ([M-q]))
#+end_quote

Blocks can optionally have names. These names can be used as :noweb references, or to use the
value of a block (or, if a source block, of the block’s results) as input (a :var) to another block in
the file.2

Drawers, Properties, Property Drawers

Org Mode drawers are a way of "closing away" information you normally won’t want to see. These
start with a line :NAME:, where NAME is a string, and end with a simple(r) :end:.

A property allows you to associate values with keys. Of particular interest to us here are property
drawers, which combine the two concepts to provide a place to put parameters that customize the
environment in which Org Mode processes your file (and, in particular, for our case, the context in
which source code is evaluated).

Source blocks
Source blocks are lines of text, surrounded by a #+begin_src line before the beginning and a
#+end_src line after the end of the code.

Source blocks can be named by a #+name line which appears immediately before the #+begin_src
line.

Source blocks can also have various header arguments that modify the context in which the
source block executes.

(As mentioned above, a source block skeleton can be created by typing [M-x org-insert-structure-template]
([C-c C-,]) and entering [=s=].)

Inline source blocks

Source blocks can also be expressed using a =src_LANG= construct; a
=#+name:= line can be used to name the =src_LANG= block. for example,
src_R{"hello, world"} {{{results(=hello\, world=)}}}.

2I believe there are facilities for "naming" bits of information in other .org files, but I don’t know the details and
I don’t know if it works with source code blocks.

3

https://orgmode.org/manual/Drawers.html#Drawers
https://orgmode.org/manual/Properties-and-Columns.html#Properties-and-Columns
https://orgmode.org/manual/Property-Syntax.html#Property-Syntax
https://orgmode.org/manual/Property-Syntax.html#Property-Syntax

Inline source blocks have their own syntax for [[headerarguments][header arguments]]:
src_R[:results output]{cat("hello, again")} {{{results(=hello\, again=)}}}.

And, the results of an inline source block can be used as input (via :var) to another source block.

#+name: whyo
src_R{"42"} {{{results(=42=)}}}

#+begin_src R :var x=whyo :exports results
x
#+end_src

#+RESULTS:
| 42 |
| |

Evaluating source blocks
In order to enable evaluation of source blocks of R code, you will need to evaluate the following
source block. (Emacs lisp is the only language whose evaluation is enabled by default.) To do this,
position your cursor inside the source block (or on the #+begin_src or #+end_src line), and type
[M-x org-babel-execute-src-block] ([C-c C-c]) (not the square brackets; just what is inside).
Additionally, evaluating code in a file can be a security risk, so you will be prompted to make sure
you want to execute the code.

#+name: set-allowed-languages
#+begin_src elisp :results none
(org-babel-do-load-languages
’org-babel-load-languages
’((emacs-lisp . t) (R . t) (python . t)))

#+end_src

(Here, I named the source block mainly so that the confirmation message can provide you the
name of the block for which it is asking permission to evaluate.)

You can also enable evaluation in an R source code block by customizing the variable org-babel-load-languages,
via [M-x customize-variable], or [M-S-:(customize-variable ’org-babel-load-languages)]
and enable R (something like "Ins", "Value Menu", "R", "State"),

Once enabled, an R source block, for example, can be evaluated using the same command,
[M-x org-babel-execute-src-block] ([C-c C-c]) (with point inside the source block):

#+name: first-r-block
#+begin_src R :results output
cat("this block has been evaluated\n")

#+end_src

#+RESULTS: first-r-block
: this block has been evaluated

Evaluation via a call statement

Source blocks can also be evaluated by call statements in the .org file. Call statements have two
forms, somewhat similar to the two forms of source blocks.

First, a #+call line can trigger evaluation of a source block. To trigger the triggering, you will
need to type [M-x org-babel-execute-src-block] ([C-c C-c]) with point positioned on the call
line.

4

#+call: first-r-block()

#+RESULTS:
: this block has been evaluated

Similarly, there is an inline call statement form which can trigger
evaluation of a source block. here it is, inline!
call_first-r-block() {{{results(=this block has been evaluated=)}}}.

inline call statements have a syntax for block-specific header arguments similar to that of inline
source blocks.

Exporting source blocks
Source blocks are, optionally, exported – to a .html or .pdf file, say – along with some of the rest
of a .org file.

To start the export process, one types executes the command M-x org-export-dispatch ([C-c C-e]).
Org mode then pops up a window that allows you to customize your export. At the top of this
window are mostly options for defining the scope of the export. For example, if you then type
[C-s], only the subtree in which the export is initialized will be exported.

Then, one can choose the type of export: Org, Html, Latex (including PDF), Markdown, or
Plain Text.

(The top and the lower parts talk about publishing, which accomplishes exporting in a slightly
heavier way, requiring the parameters to be pre-set in the org-publish-project-alist variable.
We won’t discuss publishing here – you can read about it in the Org Mode manual – but it is, in
fact, the way the .html and .pdf files associated with this tutorial have been produced.)

The following code is based on a question to the R-help e-mail list. The goal was a simple way
to find the peaks and valleys (highest and lowest values) in a vector of numbers.

#+name: peaks-and-valleys
#+begin_src R :exports both
x <- c(1,0,0,0,2,2,3,4,0,1,1,0,5,5,5,0,1)
(cumsum(rle(x)$lengths)-(rle(x)$length-1))[which(diff(diff(rle(x)$values)>=0)<0)+1]
cumsum(rle(x)$lengths)[which(diff(diff(rle(x)$value)>0)>0)+1]

#+end_src

#+RESULTS: peaks-and-valleys
| 4 |
| 9 |
| 12 |
| 16 |

If you type M-x org-export-dispatch ([C-c C-e]), then [C-s] (for "subtree"), then [h] (for
"html"), and [o] (for "open"), then, assuming your Emacs is configured to know how to open a
.html file in a browser (90% likely, I’d guess), you’ll see the text in this subtree, the above code,
and the indices of the valleys (the last result).

The :exports both is a header argument that tells Org Mode to export both the source code
itself, as well as the results of its evaluation (you will be prompted to authorize the evaluation).
One could also say one of: :exports none, :exports code, or :exports results.

Tangling code
Tangling is a term the literate programming world uses to mean extracting the source code from a
"literate" document in a way that the code can then be compiled and/or executed. In Org Mode

5

https://stat.ethz.ch/pipermail/r-help/2021-March/470671.html
https://orgmode.org/worg/org-contrib/babel/index.html

files, the :tangle header argument defines the filename to which a source block should be written.
Like all header arguments, the :tangle header argument can be specified at the file, subtree, or
individual source block level. All source blocks that have (or inherit) the same :tangle header
argument will be tangled to the same file, in the order in which they appear in the .org file.

Repeating a source block from above (using :noweb syntax),

#+name: peaks-and-valleys-tangling
#+begin_src R :exports both :tangle peaks-and-valleys.el :noweb yes
<<peaks-and-valleys>>

#+end_src

#+RESULTS: peaks-and-valleys-tangling
| 4 |
| 9 |
| 12 |
| 16 |

Now, you could, if you chose, enter [M-x org-babel-tangle] ([C-c C-v t]). But, be warned!
This will tangle all the source blocks in the current (this) .org file that have a :tangle header
argument (specified or inherited). One can restrict the tangle operation to the source block at
point (see [M-x describe-function] ([C-h f]) for org-babel-tangle for details), but even so,
I would suggest being careful.

Editing a source block
The source block is just a number of text lines in text file. So, it is very normal to do minor edits in
line, in the .org file. A certain amount of code highlighting (fontification, I guess, in Emacs parlance)
is provided when editing source blocks inline.

On the other hand, by positioning the cursor on the source block and executing [M-x org-edit-src-code]
([C-c ’]), one can "pop out" the source block and edit it in a buffer with the major mode set
appropriately for the language of the source block. In the case of an R source block, the major
mode will (the R-flavor of) ESS, ESS[R].

To enabling editing R code (if you get an error message No such language mode: R-mode), you
may need to evaluate the following code:

#+name: requireessrmode
#+begin_src elisp :results none
(require ’ess-r-mode)

#+end_src

Feel free to experiment with the following code. On the R-help list, a new value for the vector
x was proposed.

x <- c(1,1,1,2,2,3,4,4,4,5,6,6,6)

If you like, edit the source, change x, and evaluate it. What is its result? Is there a peak? A
valley? 3

#+begin_src R
x <- c(1,0,0,0,2,2,3,4,0,1,1,0,5,5,5,0,1)
(cumsum(rle(x)$lengths)-(rle(x)$length-1))[which(diff(diff(rle(x)$values)>=0)<0)+1]
cumsum(rle(x)$lengths)[which(diff(diff(rle(x)$value)>0)>0)+1]

#+end_src

3One solution was proposed here.

6

https://stat.ethz.ch/pipermail/r-help/2021-March/470709.html

#+RESULTS:
| 4 |
| 9 |
| 12 |
| 16 |

When editing, the "OrgSrc" minor mode is enabled. This mode provides binding for

[M-x org-edit-src-save] ([C-x C-s]) to save the source edit back to the main .org buffer

[M-x org-edit-src-abort] ([C-c C-k]) to abort the current editing, discarding any unsaved
changes

[M-x org-edit-src-exit] ([C-c ’]) to save any unsaved changes back to the .org buffer and
close the source edit buffer

NB: If you are editing a block that has :noweb references, the references will not be expanded
when passing the block (in part or in whole) to a running iESS instance (via, e.g., [M-x org-babel-execute-src-block]
([C-c C-c]) or [M-x ess-eval-buffer] ([C-c C-b])). And, in fact, the R interpreter will likely
flag a syntax error should you try to do so.

Header arguments
Header arguments modify the execution context in which Org Mode source blocks are evaluated
and/or in which the results of those evaluations are processed.

Header arguments can be specified on, and apply to

• a #+property: header-args line, to apply as defaults for all source blocks in a file

• inside a :PROPERTIES: drawer of a headline (node in the tree defined by the .org file), to
apply as defaults for all source blocks in that subtree

• the #+begin_src line that precedes the source block

• separate #+header line(s), immediately preceding the #+begin_src line.

Here is an example from a .org file that shows those ways of defining various header arguments.
The #+header-args+ construct adds these arguments to the list of header args.

#+property: header-args :tangle ./nosuchdirectory/bigfile

** this is somewhere in this file
:PROPERTIES:
:header-args+: :tangle very/important/code.R
:END:

now, code blocks will carry that name

#+header: :exports results
#+begin_src R :results value

x <- "we want some code, and we want it now!"
#+end_src

The following are some of the header arguments I most often use.

7

:colnames and :rownames

When processing a table result of a previous source block to be used as an input variable to another
code block, the :colnames header argument instructs Org Mode how to interpret the first row:
should it be assumed to be a row of column names, a row of data, or should Org Mode use a
heuristic to make that determination.

Similarly, Org Mode uses :rownames to determine whether the first column of each row should
be considered as a name for that row, or simply as the data of the first column of that row.

Also, when processing the results of a code block, these header arguments tell some Org Mode
language support routines how to deal with column and row names of the returned result. If left off,
the Org Mode result of evaluation will drop any language-specific column and row names. However,
if these header arguments are set to yes, language-specific column and row names will be included
in the results placed in the Org Mode buffer.

#+BEGIN_SRC R
mtcars[1:3,]
#+END_SRC

#+RESULTS:
21	6	160	110	3.9	2.62	16.46	0	1	4	4
21	6	160	110	3.9	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.32	18.61	1	1	4	1

#+begin_src R :colnames yes :rownames yes
mtcars[1:3,]
#+end_src

#+RESULTS:
| | mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
|---------------+------+-----+------+-----+------+-------+-------+----+----+------+------|
Mazda RX4	21	6	160	110	3.9	2.62	16.46	0	1	4	4
Mazda RX4 Wag	21	6	160	110	3.9	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4	1

:noweb

Many (most?) programming languages have a way of "including" the "textual" contents of one
source file in the compilation or execution phase of another source file. I think of #include
<stdio.h, for example, in C. Literate programming defines a way of doing this known as "noweb".

In Org Mode’s implementation, inside a source block, a reference to a previous block of code
named NAME is denoted by «NAME». The double angle brackets signal that this is a noweb reference.4
However, by default, noweb processing is disabled in an Org Mode buffer. The :noweb header
argument defaults to no, but can be set to yes to enable noweb processing. Again, as with all
header arguments, this can be done on a per-file, per-subtree, or per-(referring-)source block basis.

The noweb reference «NAME» can refer to either the name of another source block in the .org
file:

#+name: a-noweb-name
#+begin_src R :noweb no
cm <- "copy me!"

#+end_src

4Outside of a source block, «NAME» is used to tag an internal link in the .org file; if you are visiting this as a .org
file in Emacs, you may have noticed instances in this document.

8

https://www.cs.tufts.edu/~nr/noweb/
https://orgmode.org/worg/org-contrib/babel/intro.html#literate-programming-example
https://orgmode.org/manual/Internal-Links.html#Internal-Links

#+RESULTS: a-noweb-name
: copy me!

or with the :noweb-ref header argument:

#+begin_src R :noweb-ref another-noweb-name :noweb no
cmt <- "copy me, too!"

#+end_src

#+RESULTS:
: copy me, too!

#+begin_src R :noweb yes :results output
<<a-noweb-name>>
<<another-noweb-name>>
cat(cm, "\n", cmt, "\n", sep="")

#+end_src

#+RESULTS:
: copy me!
: copy me, too!

(If you edit the header of the previous source block by changing "yes" to "no" and then evaluate
it, you will get an error as R tries to parse a line that begins with «.)

Note that, like the :noweb header argument, the :noweb-ref header argument can be set on a
subtree basis. (I dread to think of what would happen were it to be set on a file basis. Okay, I have
to try. Be right back. . . Not much happened. I suppose this is special-cased.)

:var

In Org Mode, the evaluation of source blocks can include initializing variables, using the :var
header argument.

#+name: gives-pi
#+begin_src R :var pi=3.14
pi

#+end_src

#+RESULTS: gives-pi
: 3.14

The left hand side of the argument to :var is the name of the variable as seen by the code inside
the source block. The right hand side can be a constant (as above), or can designate the output of
another source block in the .org file. In that case, the right hand side is the name (#+name:) of the
source block providing the desired result.

If you evaluate the following source block, you will be asked to allow evaluation twice: once to
produce the result from the above source block, and a second time to produce the result from the
source block you are evaluating.

#+begin_src R :var pitoo=gives-pi :session R :results output
cat("you were", pitoo/pi, "close!\n")

#+end_src

#+RESULTS:
: you were 0.999493 close!

9

The language of the source block providing the value of the variable does same as the language
of the source block receiving the value. In general, though, there may be some adaptation required
to mould the shape of the input value to that needed by the source code.

#+name: from-python
#+begin_src python :results value
return 21

#+end_src

#+RESULTS: from-python
: 21

#+name: to-r
#+begin_src R :var howmany=from-python
2*howmany

#+end_src

#+RESULTS: to-r
: 42

The name on the right hand side, instead of naming another source block in the file, can also
name, e.g., an Org Mode table.

student first exam second exam final
Greg 1 3 2
George 2 2 2
Linda 3 1 2
Georgia 4 4 4

In the following code block, the :colnames header argument is set to yes so that the first row is
considered a row of column names.

#+begin_src R :var tbl=a-table :colnames yes :session R
summary(tbl)

#+end_src

#+RESULTS:
| student | first.exam | second.exam | final |
|------------------+--------------+--------------+-------------|
Length:4	Min. :1.00	Min. :1.00	Min. :2.0
Class :character	1st Qu.:1.75	1st Qu.:1.75	1st Qu.:2.0
Mode :character	Median :2.50	Median :2.50	Median :2.0
nil	Mean :2.50	Mean :2.50	Mean :2.5
nil	3rd Qu.:3.25	3rd Qu.:3.25	3rd Qu.:2.5
nil	Max. :4.00	Max. :4.00	Max. :4.0

For R code, a second effect of setting :colnames to yes is that if the result is an R data frame,
its column names (colnames()) will be preserved in the resulting Org Mode table

#+begin_src R :colnames yes
mtcars[1:4,]

#+end_src

#+RESULTS:

10

| mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
|------+-----+------+-----+------+-------+-------+----+----+------+------|
21	6	160	110	3.9	2.62	16.46	0	1	4	4
21	6	160	110	3.9	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.32	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1

#+begin_src R :colnames no
mtcars[1:4,]

#+end_src

#+RESULTS:
21	6	160	110	3.9	2.62	16.46	0	1	4	4
21	6	160	110	3.9	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.32	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1

:results

The :results header argument specifies many things. First, it specifies whether the results of
an evaluation consist in the value "returned" by the evaluated source block, or by the output (to
standard output) produced by the source block. The "value returned" means, in many programming
languages (include R), the value of the last statement executed in the source block. You may have
noticed examples of this use of :results in some of the previous source blocks. The values here
are value and output.

#+name: usenowebhere
#+begin_src R :results none
truepi <- pi
cat(truepi, "\n", sep="")
invisible(truepi*2)

#+end_src

#+begin_src R :results output
<<usenowebhere>>

#+end_src

#+RESULTS:
: 3.141593

#+begin_src R :results value
<<usenowebhere>>

#+end_src

#+RESULTS:
: 6.28318530717959

• Type of result

Here, the question is what sort of Org structure should the returned value be considered to
consist. The results can be interpreted to be an Org Mode table, list, or verbatim text. Or,
the results can be output to a file.

#+name: results-noweb
#+begin_src R

11

mtcars[c(1,12,13, 19),]
#+end_src

#+RESULTS: results-noweb
21	6	160	110	3.9	2.62	16.46	0	1	4	4
16.4	8	275.8	180	3.07	4.07	17.4	0	0	3	3
17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	3
30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2

If no result type is listed, Org Mode makes its pretty-good guess.

#+begin_src R :results value
<<results-noweb>>

#+end_src

#+RESULTS:
21	6	160	110	3.9	2.62	16.46	0	1	4	4
16.4	8	275.8	180	3.07	4.07	17.4	0	0	3	3
17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	3
30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2

But, to be sure, you can specify the type you would like. (Note the reapearance of :colnames.)

#+begin_src R :results value table :colnames yes
<<results-noweb>>

#+end_src

#+RESULTS:
| mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
|------+-----+-------+-----+------+-------+-------+----+----+------+------|
21	6	160	110	3.9	2.62	16.46	0	1	4	4
16.4	8	275.8	180	3.07	4.07	17.4	0	0	3	3
17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	3
30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2

scalar and verbatim are synonyms. They cause the value to be taken, well, at face value:

#+begin_src R :results scalar
<<results-noweb>>

#+end_src

#+RESULTS:
: 21 6 160 110 3.9 2.62 16.46 0 1 4 4
: 16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3
: 17.3 8 275.8 180 3.07 3.73 17.6 0 0 3 3
: 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2

And, list converts the source block result into an Org Mode list.

#+begin_src R :results list
<<results-noweb>>

#+end_src

12

#+RESULTS:
- (21 6 160 110 3.9 2.62 16.46 0 1 4 4)
- (16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3)
- (17.3 8 275.8 180 3.07 3.73 17.6 0 0 3 3)
- (30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2)

• How the results are formatted

There are various ways Org Mode might decide to format the results, of, more or less, whatever
type, before embedding them in the .org buffer.

For example, to want the results to be wrapped in a source block, one can specify code:

#+begin_src R :results value code
"<<results-noweb>>"

#+end_src

#+RESULTS:
#+begin_src R
mtcars[c(1,12,13, 19),]
#+end_src

This also shows that noweb syntax isn’t defeated by, e.g., being embedded inside quotation
marks. One can also specify that the results be embedded in an Org Mode "drawer" (which
can be "closed", so the results don’t show), or embedded in a source block of type "org",
in blocks whose content will only be used when exporting to HTML, or to LATEX (including
PDF), etc.

There is (apparently – writing this tutorial is a learning experience!) also a :wrap header
argument, separate from the :results header argument, which specifies a value X, and the
results are summarily wrapped in a #+begin_X...#+end_X block.

#+begin_src R :wrap foo
3

#+end_src

#+RESULTS:
#+begin_foo
3
#+end_foo

Here the code creates a graphic file (named by the :file header argument).

#+begin_src R :file speed.png :results output file graphics :exports code
from "?graphics::plot"
Speed <- cars$speed
Distance <- cars$dist
plot(Speed, Distance, panel.first = grid(8, 8),

pch = 0, cex = 1.2, col = "blue")
plot(Speed, Distance,

panel.first = lines(stats::lowess(Speed, Distance), lty = "dashed"),
pch = 0, cex = 1.2, col = "blue")

#+end_src

13

• Handling of results

Typically, the results of evaluating a source block are placed in the buffer following the source
block, preceded by a line

#+RESULTS: <NAME>

where <NAME> is the name of the source block, if any, or blank.

#+begin_src R
Sys.time()

#+end_src

#+RESULTS:
: 2021-04-15 09:40:03

#+name: time
#+begin_src R
Sys.time()

#+end_src

#+RESULTS: time
: 2021-04-15 09:40:03

However, this behavior can be modified with the :results header argument. The relevant
options are

silent Don’t change the buffer. The results are echoed in the minibuffer.
replace This is the normal behavior; the #+RESULTS: block is replaced.
append Each evaluation generates a separate #+RESULTS: block, which is placed after the

previous result blocks.
prepend Each evaluation generates a separate results block, which is placed before all pre-

vious result blocks.

Well, really, that is all pretty much just copied from the manual. Which, see.

:session

Normally, when Org Mode evaluates a source block, in instantiates a new process of the appropriate
type (the R command, for example), provides that process with the source from the source block
(expanding :noweb references), and lets it run.

This ensures that each run starts from a "clean state". On the other hand, it means that
artefacts left behind by previous runs are not available to a future run in cases where that might
be desirable. And, it can complicate debugging.

Thus, Org Mode provdies a :session header argument which names a buffer (that Org Mode
will create, if it doesn’t already exist) in which evaluations of the current source block (or, all source
blocks in the file, or all in a subtree) will occur.

During a given Emacs instance, the first time you type [M-x org-babel-execute-src-block]
([C-c C-c]) in a source block with a given :session name, Emacs will prompt you for the name
of the starting directory (with a default being the directory of the current file). It will then start
up such a process, attach it to a buffer (i’m not totally sure of the Emacs terminology here) with
the name provided as the argument to the :session header argument (or, use a language-specific
default), and evaluate your code. This works for interpreted languages but not, to my knowledge,
for compiled languages.

14

https://orgmode.org/manual/Results-of-Evaluation.html#Results-of-Evaluation

#+begin_src R :session R-session-name :exports code :eval never-export :results none
x <- 1
#+end_src

#+begin_src R :session R-session-name :eval never-export :exports code
x
#+end_src

If you evaluate the above two blocks in order, the second will return as a result the value of x
set by the first.

After evaluations, you can use [M-x switch-to-buffer] ([C-x b]) to switch to that buffer
and inspect the state, maybe set debug breakpoints, or debug after error or debug statement
(browser(), say) in your code.

For R, the session buffer uses ESS[R] mode. (As well as in the OrgSrc minor mode.)
As I said above, the fact that future evaluations of the given source block, or of any other source

block with the same :session argument, will run in the same R process is both a feature and a
bug. On the bug side, you may end up developing code that only works with the accumulated state
in the current buffer.

For example, say you are developing an R package and are testing it with some code that imports
(require()) that package. And, say your test code points out an error in your package code, and
that you fix your package code and re-build and re-install your package. Now, if you once again
evaluate your test code, it will execute the require() statement but will do nothing as, as far as R
is concerned, your package is already loaded. So, you will need to detach and unload your package
which, if my memory serves me right

detach(package:PACKAGENAME, unload=TRUE)

or some such. Then, R will load the new version of your package the next time you or your
code require’s it.

Still, I find :session immensely valuable while developing code or doing an analysis. If you
find yourself wanting to use a debugger to debug your code, or to incrementally build up state as
your are working, I recommend (carefully) using it.

:cache

Sometimes you will have a long-running computation, the results of which are used as input to other
computations, or for export. In this case, you may not want to have to re-run the computation if
its results won’t change. To help with this situation, Org Mode has the :cache header argument.

If a source block is marked with :cache yes is scheduled to be evaluated, Org Mode checks the
following:

• the contents of the source block itself

• the header arguments to the source block

• the values of the sources of all the :var header arguments

If none of these have changed (as testified by a cryptographic hash over these) since the last
evaluation of the source block, then the value of the previous evaluation is used as the value of the
current evaluation.

Of course, if a source code block takes input from some external source, such as a file, that may
have changed since the previous evaluation, Org Mode won’t notice, and you may get incorrect
results. Also, a source code block that makes use of the results of a random number generator will
not be re-evaluated. It is the responsibility of the programmer to not mark source blocks of these
types with :cache yes.

Here is an example. When it is actually evaluated, this source code block will block for two
seconds. If you evaluate it a second time, the results will appear immediately.

15

https://cran.r-project.org/web/packages/

#+name: long-computation
#+begin_src R :cache yes
Sys.sleep(2)
42

#+end_src

#+RESULTS[1850a21ec1cef57306973138b0c17881d00f9820]: long-computation
: 42

Now, we look at how :cache deals with one of the inputs changing. First, here is a source which
produces the same value each time it is run:

#+name: stable
#+begin_src R
23

#+end_src

#+RESULTS: stable
: 23

Then, a source that produces a different value each second:

#+name: unstable
#+begin_src R
Sys.time()

#+end_src

#+RESULTS: unstable
: 2021-04-15 09:40:05

Then, two functions. The first uses results of the unvarying source code block as input. The
first time you evaluate it with [M-x org-babel-execute-src-block] ([C-c C-c]), it will sleep
the two seconds. However, after that, evaluating it will return results immediately.

#+begin_src R :var input=stable :cache yes
Sys.sleep(2)
input

#+end_src

#+RESULTS[1de9d77db24319fea2fea80b19d13eb552cda0f3]:
: 23

This function, on the other hand, takes as input results from the varying function. Each time
(well, separated by at least one second) you evaluate it, it will take the full two seconds.

#+begin_src R :var input=unstable :cache yes
Sys.sleep(2)
input

#+end_src

#+RESULTS[0f1dc4a63574d3b29d8ea59bd124cad3d096b5e5]:
: 2021-04-15 09:40:08

Other sources of information
The official Quick Start guide provides a very good introduction to Org Mode. The main Org Mode
web page is another good source for further information, as is the Org Mode worg site. (You may

16

https://orgmode.org/quickstart.html
https://orgmode.org/
https://orgmode.org/worg/

find it useful to take a linear stroll through the worg site map.) Also, once installed on your system,
the Org Mode info pages are available in Emacs (or, using info(1)).

The Org Mode Compact Guide has a section on source blocks. A separate "worg" page gives
information on using R with Org Mode. The list of languages officially supported by Org Mode is
documented here. In addition to that list, a number of Emacs packages add support for additional
programming languages; you can enter [M-x list-packages] and (regexp) search for ^ ob-, to
list a number of these.

The Org Mode community has various forms of engaging with one another. In particular, there
is an e-mail list, an IRC channel, etc.

The other presentations in this ESS intro series provide more detail about ESS. The ESS project
also has ways to connect, listed here.

The beamer slides for this tutorial are here (html). A .html version of this file is here (pdf), and
plain text version, suitable for experimentation in Emacs, is here (no PDF file for this one!). The
github repository for this presentation is here.

There are some videos you might find useful. Rainer König’s screencasts about Org Mode (also
available as a course on Udemy) are useful for coming up to speed with Org Mode, but are more
focused on the non-programming aspects of Org Mode. SystemCrafters’ videos include a number
that touch on various aspects of both Emacs and Org Mode. DT ("Distro Tube"?) has yet another
introductory video. And, tdhock has a playlist Emacs and R.

There are some nice tutorials. A somewhat older one is from Erik Iverson, org-mode-R-
tutorial.org. And, there is a more recent one from Vikas Rawal, orgpapers.org.

17

https://orgmode.org/worg/sitemap.html
https://orgmode.org/guide/
https://orgmode.org/guide/Working-with-Source-Code.html
https://orgmode.org/worg/org-contrib/babel/languages/ob-doc-R.html
https://orgmode.org/worg/org-contrib/babel/languages/index.html
https://www.emacswiki.org/emacs/InstallingPackages
https://orgmode.org/community.html
https://ess-intro.github.io/
https://ess.r-project.org/index.php?Section=home
https://ess.r-project.org/index.php?Section=getting%20help
https://ess-intro.github.io/presentation-org-mode/artefacts/ess-org-beamer.pdf
https://ess-intro.github.io/presentation-org-mode/artefacts/ess-org-beamer.html
https://ess-intro.github.io/presentation-org-mode/artefacts/ess-org-demo-results.html
https://ess-intro.github.io/presentation-org-mode/artefacts/ess-org-demo-results.pdf
https://ess-intro.github.io/presentation-org-mode/artefacts/ess-org-demo-expanded.org
https://github.com/ess-intro/presentation-org-mode
https://www.youtube.com/playlist?list=PLVtKhBrRV_ZkPnBtt_TD1Cs9PJlU0IIdE
https://www.udemy.com/course/getting-yourself-organized-with-org-mode/?referralCode=D0CB0D077ED5EC0788F7
https://www.youtube.com/c/SystemCrafters/videos
https://www.youtube.com/watch?v=Ea_-TaEGa7Y
https://www.youtube.com/playlist?list=PLwc48KSH3D1Onsed66FPLywMSIQmAhUYJ
https://github.com/erikriverson/org-mode-R-tutorial/blob/master/org-mode-R-tutorial.org
https://github.com/erikriverson/org-mode-R-tutorial/blob/master/org-mode-R-tutorial.org
https://github.com/vikasrawal/orgpaper/blob/master/orgpapers.org

